2017
TECH & FACTS
REPORT
- SCOTT SPARK -
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTT SPARK RC</td>
<td>4</td>
</tr>
<tr>
<td>ENGINEERING & PRODUCT DEVELOPMENT BACKGROUND</td>
<td>6</td>
</tr>
<tr>
<td>SPARK WHEELSIZE OPTIONS</td>
<td>8</td>
</tr>
<tr>
<td>RACING CONCEPT: THE NEW EXTENDED RC FAMILY</td>
<td>10</td>
</tr>
<tr>
<td>FRAME TECHNOLOGY</td>
<td>12</td>
</tr>
<tr>
<td>FRAME FEATURES</td>
<td>16</td>
</tr>
<tr>
<td>BOOST TECHNOLOGY</td>
<td>20</td>
</tr>
<tr>
<td>SUSPENSION TECHNOLOGY</td>
<td>22</td>
</tr>
<tr>
<td>SYSTEM INTEGRATION</td>
<td>24</td>
</tr>
<tr>
<td>SYNCROS SL LINE</td>
<td>26</td>
</tr>
<tr>
<td>GEOMETRY</td>
<td>28</td>
</tr>
<tr>
<td>RANGE OVERVIEW</td>
<td>30</td>
</tr>
<tr>
<td>GEOMETRY CHARTS</td>
<td>43</td>
</tr>
</tbody>
</table>

1749 GRAMS
BUILT WITH PERFECTION
BRED TO WIN
COUNTLESS WORLD CUP WINS, ONE CHAMPION RIDE
SCOTT SPARK RC

The SCOTT Spark is not only one of the most successful full suspension bikes on the World Cup circuit, it’s also one of the most popular bikes for non-racers. The light and stiff - race proven frame design has always appealed to a broad spectrum of riders, from elite Cross-Country and marathon racers to casual enthusiasts and trail riders. Thanks to numerous tech features, like TwinLoc FOX lockout technology, the geometry adjustment chip and its race-inspired geometry, the Spark’s versatility has been in a class of its own for many years.

Our approach with the new Spark was fairly simple – the frame built to suit the best of the best also had to suit everybody. World Champion Nino Schurter enjoys a finely tuned set-up, but the frame itself is no different from the one everybody can buy in a SCOTT bike shop. That has always been the case, and it applies more than ever before to the new generation of Spark frames. Every single one of the 33 Spark models available benefits from the R&D effort invested in the highest end bikes. The technologies utilized in the new Spark platform will push the bike’s boundaries again and make the latest iteration the greatest yet. Its clean lines and forms give it a clean and tidy look. Its elegant profile expresses our approach to modern design. Yet despite the Spark’s visual simplicity, the bike is loaded with technical features and details. The frame includes a host of micro-specifically detailed technical solutions which in total make it one of the best overall cross-country full suspension packages.
RENE KRATTINGER

MTB PRODUCT MANAGER

“The XC and Trail segments are our most important mountain bike categories to date. With an increase in diversification of rider demands, we’ve increased our range in this class of 100 to 130mm travel bikes. From dedicated 1x race weapons to "do-it-all" marathon-trail bikes, we offer nothing less than the greatest amount of choice in our history including all three wheel-sizes, 27.5", 27.5" Plus and 29" included.”

CHIEF OF MTB ENGINEERING

JOE HIGGINS

“Engineers don’t like design compromises. Splitting the Spark family into three models allowed us to create bikes with a shared DNA and distinct purpose. The Spark RC is a 100% race dedicated full suspension bike—by designing a 1x specific platform and using HMX-SL fibres for the first time on MTB we’ve set a new benchmark in terms of weight. The final bike is the result of hundreds of careful design decisions which combine to create the perfect racing tool for our racers to keep on winning.”

NINO SCHURTER

4X WORLD CHAMPION & WORLD CUP CHAMPION

“The new Spark is packed with race dedicated tech features. I couldn’t ask for a more race-optimized package. The new bike is not only unbelievably light and stiff, but it also pedals like a hardtail! I feel like the pedal efficiency is even better than on the old Spark. It really feels much more compact and easier to handle. What really suits my riding style is the much better kinematics of the new frame, which results in much better suspension. The bike is more sensitive at the beginning of travel but becomes more supportive from key point onwards, with a progressive or tat for cross country riding.”

<table>
<thead>
<tr>
<th>Bike Model</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARK RC 700 SL</td>
<td>9.8</td>
</tr>
<tr>
<td>SPARK RC 900 ULTIMATE</td>
<td>10.9</td>
</tr>
<tr>
<td>CONTESSA SPARK RC 700</td>
<td>10.0</td>
</tr>
<tr>
<td>SPARK 700 PLUS TUNED</td>
<td>11.6</td>
</tr>
<tr>
<td>SPARK 900 PREMIUM</td>
<td>11.6</td>
</tr>
<tr>
<td>(All weights size M, incl. tubes)</td>
<td></td>
</tr>
</tbody>
</table>
SPARK
WHEELSIZE OPTIONS

SCOTT
SPARK RC 700 / SPARK 700

The Spark 700 series of bikes uses the 27.5” wheel standard and is suitable for everyday riders as well as for endurance racers. The Spark RC 700 models are no-compromise, race-dedicated 1x weapons with 100 mm of travel, while the rest of the 700 / 27.5” line comes with 120 mm of travel.

SCOTT
SPARK RC 900 / SPARK 900

Spark 29ers are suitable for everyday riders as well as for endurance racers. The Spark RC 900 models are no-compromise, race-dedicated 1x weapons with 100 mm of travel, while the rest of the 900 / 29” line comes with 120 mm of travel.

SCOTT
SPARK 700 PLUS

The Spark Plus series of bikes are the descendants of racing heritage with a trail focus blended in. Light-weight, ample amounts of suspension and some rowdy 2.8” tires make these bikes modern day trail rockets.

SPARK RC

- front travel: 100 mm
- rear travel: 100 mm

SPARK

- front travel: 120 mm
- rear travel: 120 mm

- lightweight, versatile, fun
- superior traction, both going up and going down
- three bikes in one at the touch of a finger thanks to Twinloc
- one of the lightest in its class

THE BEST MIX OF INCREASED ROLL-OVER ACCELERATION AND PERFECT GEOMETRY
THREE BIKES IN ONE AT THE TOUCH OF A FINGER THANKS TO TWINLOC
ONE OF THE LIGHTEST IN ITS CLASS

ONE OF THE LIGHTEST IN ITS CLASS
There are few brands in cycling with a long and successful history of mountain bike racing like SCOTT. We have been at the forefront of off-road bike racing for over 20 years. And with these decades of top-level bike competitions behind us, our Racing Concept, or RC, is at the core of our brand’s heritage. Respectful of our origins, we are proud of every historical milestone while keeping our creative vision focused forward to the future. We are constantly willing to go further, do better, and to push boundaries. Every step leads us to the next one and builds a solid base from which SCOTT’s design teams can develop and create tomorrow’s inspiring products.

SCOTT RC products have equipped the winners of World Cup Overall, World Championships and Olympic medals. For decades we have supplied racers around the world with the bikes, apparel, helmets and footwear that they needed to shave seconds off of the clock and enable their triumphant steps up onto the podium.

With the new generation of Scale and Spark RC frame platforms, we felt the time had come to grow the family of RC bikes. The 2017 RC collection of dedicated race bikes comprises the lightest SCOTT mountain bikes ever built. With a weight of 849g, the Scale RC 700 SL frame sets a new benchmark for hardtail mountain bike frames. The new Spark RC 700 SL weighs in at only 1750g (frame set incl. shock). All the RC models are optimized for 1x drivetrain systems. Thanks to the Boost standard, all our 1x-optimized RC frames are even stiffer than ever before. The new RC family consists of 16 high-end, race-dedicated models. This selection features the lightest carbon composites utilized by SCOTT, and it leaves nothing to be desired.

The RC family includes all options - hardtail or full-suspension, and 27.5” or 29” wheel size geometries. All RC models come with 100mm of travel.

NINO SCHURTER
4x WORLD CHAMPION, SCOTT-ODLO MTB RACING TEAM:
“The SCOTT RC line has accompanied me since I first joined SCOTT. Over the years, SCOTT engineers have continuously developed better and better bikes, tuning them so that every single detail meets our race inspired demands. As a result, today we see one of the lightest, stiffest and most successful race bikes in the world.

With regards to design, the SCOTT RC line delivers an outstanding concept, setting us apart from the rest. No matter if we’re talking about hardtails, full suspension bikes or accessories, SCOTT RC for me represents exactly what racers need- it truly is an integrated, uncompromising and modern package built to win.

No matter which model of the new RC family bikes a racer would choose, its race-focused design and no-compromise attitude makes this choice really a dream come true.”
Over the years, the R&D experts at SCOTT have learned a lot when it comes to carbon engineering. For the 2017 generation, we've used our expertise to not only create super highend carbon frames, but rather to apply our knowledge of ultra-lightweight carbon construction also for all existing levels of carbon frames that we offer.

In terms of carbon evolution, our carbon experts, started over from zero for the Spark project. We not only use new carbon fibres. We have also have more complex and intelligent shapes for the layers. Plus, we broke our frame build-up into more pieces which results in a higher complexity of the frame (see “EvoLap-Technology”, page 15).

Three material levels can be found in SCOTT’s carbon bike range - HMX-SL, HMX and HMF. With the new lay-up process, all carbon bikes become lighter, and stiffer.

Our years’ long expertise of carbon engineering is one piece of the puzzle of how to reach a super light frame. The utilization of a mix of new high-end carbon fibers is an other. Our new HMX-SL Spark frame utilizes MR70, Y560 and HR40 carbon fibers. H440 is a strong and light filament that, used together with MR70, attains unbelievable tensile strength values. To achieve our standards for stiffness, we include Y560 layers on our frames. Our choice of the most advanced carbon fibers in the market is followed by intensive use of specific tools, like FEA (Finite Element Analysis) software, to map out the carbon lay-up. With our proprietary EvoLap-Technology, we can simulate different forces on a virtual model of the frame and adjust the frame construction accordingly, managing to build frames which are on the highest technical level.

Carbon composite materials are widely used in the construction of high performance bicycles. Due to their exceptional structural properties, carbon composites are the material of choice for the world’s lightest and strongest bike frames. Since becoming popular in the bike industry over fifteen years ago, evolution of this material has continued and made great strides. Today, after years of ongoing development, we can build strong and reliable frames with superior stiffness and breathtaking light weight.

Carbon composite (commonly referred to as “carbon fiber”) is actually made from two or more constituent materials, each with significantly different physical and chemical properties. When combined, these materials produce a composite with characteristics greater than the sum of its parts.

In the case of carbon composites, the constituent materials are raw carbon fiber and resin. Think of raw carbon fiber (remember, “carbon fiber” is typically and inaccurately used as a reference to a fully completed composite) as the elongated crystalline structure of graphite atoms. When multiple fibers are bundled together they form a strand. To actually create the composite, multiple ribbons are laid together and impregnated with a type of epoxy glue called resin.

Carbon filaments are arranged side by side in a sheet with each strand oriented in the same direction; the resulting material is called “unidirectional” carbon fiber. A finished carbon composite is usually made of multiple individual layers or plys of this unidirectional carbon fiber. The specific type of fibers in the unidirectional material and the orientation of the strands inside the layers determines the characteristics of the end product. Careful engineering and manipulation of these parameters is crucial to reach the standards of weight, stiffness, comfort and reliability.

LAY-UP TYPES USED BY SCOTT

HMX-SL

HMX-SL uses the highest performance fibres currently available. MR70 is a new introduction to our lay-up collection. The raw fibre undergoes an extended refinement process to reach extremely high levels of strength with good stiffness. To further boost frame stiffness, tapes of the exceptionally stiff Y5600 fibre are employed strategically. Fibres impregnated with a nano resin are employed in some areas of the frame. This specialist resin boosts matrix strength perpendicular to and off axis off the fibre direction to toughen the structure.

HMX

SCOTT has improved upon the now conventional high-modulus carbon fiber, HMF, used throughout the bicycle industry. HMX is a fiber blend used by SCOTT, and is 20 percent stiffer than its HMF counterpart for the same weight. This unique material allows SCOTT engineers to create incredibly light bikes with excellent riding characteristics. The cost of HMX, however, is three times that of HMF, and is therefore reserved for our high end frames.

HMF

HMF carbon fiber is used to maximize strength and to keep weight low. This material has an optimal blend of stiffness and strength that offers the best riding session. SCOTT’s engineering know-how is utilized in order to create the perfect lay-up with regards to orientation and fiber size. HMF fiber offers superior strength compared to the industry standard.
NEW CARBON COMPOSITES

At SCOTT, we are proud of our rich carbon engineering history. With the goal of creating lighter frames, we always explore the newest composite technologies for applications in bicycle frames. Building the new Spark was a “no compromises” project, so our engineers started by reconsidering the frame from the smallest constituent part: the carbon fiber.

Carbon fibers are classified by their mechanical properties. In the simplest terms, fibers are differentiated by weight, tensile strength and stiffness. Mass (weight) is of course the most tangible characteristic of a light frame, but a frame must also be reliable, stiff, and strong.

The tensile strength of the carbon is its ability to withstand an applied load without failure or plastic (permanent) deformation. In simple terms, tensile strength indicates how much force is possible to apply to the carbon before it breaks.

On the other hand, the stiffness or elastic modulus is a measure of a material’s resistance to bending or being deformed elastically (i.e., non-permanently) when a force is applied to it. Essentially, how much a carbon layer will deform, bend or stretch when a load is placed on it or hung from it.

Blending these material characteristics into a finished frame by way of mixing different carbon fiber raw materials requires a scientific approach plus years of engineering experience.

Our HMX-SL frame utilizes W190D, YS60 and HR40 carbon fibers. W190D is an incredibly strong and light filament that, used together with HR40, attains unbelievable tensile strength values.

The HR40 in particular is the high modulus carbon fiber that allows our HMX-SL frame to reach such a high stiffness-to-weight ratios. The elastic modulus for this composite is much higher compared to the standard modulus carbon. As result this composite is approximately 1.5 times stiffer than standard modulus carbon fiber.

The creation of such a high performance carbon composite depends on accurate control of the carbon fiber microstructure, from the raw material to and through the entire manufacturing process. Construction of HMX-SL frames requires a special resin with small carbon particles suspended in the epoxy. This nano technology creates a supporting matrix within the resin. The nano particles contribute to improved overall strength perpendicular and off-axis to the fiber direction. Furthermore, cohesion between the fibers is improved compared to our industry leading HMX carbon blend, offering unprecedented resistance.

Thanks to these materials and technologies, we accomplished a weight savings in the 2017 HMX-SL frame (Spark RC 900) of almost 10% or 217 grams compared to the 2016 HMX frame (Spark 900).

NEW LAY-UP DESIGN WITH FEA SOFTWARE: EvoLap TECHNOLOGY

With the proper selection of materials, eighty percent of the work to create a frame is done. But the remaining twenty percent requires most of our efforts. For this reason, our choice of the most advanced carbon fibers in the market is followed by intensive use of specific tools, like FEA (finite element analysis) software, to map out the carbon lay-up. With FEA software, we can simulate different forces on a virtual model of the frame and adjust the frame construction accordingly.

FEA software enables us to create complete virtual prototypes incorporating all the physical phenomena that exist in real-world environments.

With our Evo-Lap technology we model the frame to optimize the surface area, simulate tube structures with different ply orientations, observe the results of using different configurations, and test the stress distribution in different areas of the frame.

Thanks to this extensive computer modeling, we’ve optimized the carbon layers in all the parts of our frame. When the parts were bonded together in the first prototypes, the result was a super light and compact frame without a sacrifice in the stiffness, comfort or impact resistance. The entire range benefited from our EvoLap technology, so the HMX and HMF frames save in terms of weight, respectively 217 grams and 166 grams.

2017 SPARK FRAMES: WEIGHT COMPARISONS (INCLUDES REAR SHOCK AND HARDWARE)

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>2016 Frame Weight</th>
<th>2017 Frame Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark RC 700 (HMX)</td>
<td>2422 g</td>
<td>2429 g</td>
</tr>
<tr>
<td>Spark 700 (HMX)</td>
<td>2200 g</td>
<td>1799 g</td>
</tr>
<tr>
<td>Spark 900 (HMX)</td>
<td>1820 g</td>
<td>1779 g</td>
</tr>
<tr>
<td>Spark RC 700 (HMX SL)</td>
<td>1799 g</td>
<td>1745 g</td>
</tr>
<tr>
<td>Spark 700 (HMX SL)</td>
<td>1620 g</td>
<td>1581 g</td>
</tr>
<tr>
<td>Spark 900 (HMX SL)</td>
<td>1581 g</td>
<td>1526 g</td>
</tr>
<tr>
<td>Spark RC 900 (HMX SL)</td>
<td>1526 g</td>
<td>1472 g</td>
</tr>
<tr>
<td>Spark 700 (HMF)</td>
<td>2010 g</td>
<td>1955 g</td>
</tr>
<tr>
<td>Spark 900 (HMF)</td>
<td>1955 g</td>
<td>1900 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>2017 Frame Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark RC 700 (HMX SL)</td>
<td>1745 g</td>
</tr>
<tr>
<td>Spark 700 (HMX SL)</td>
<td>1779 g</td>
</tr>
<tr>
<td>Spark 900 (HMX SL)</td>
<td>1820 g</td>
</tr>
<tr>
<td>Spark RC 900 (HMX SL)</td>
<td>1799 g</td>
</tr>
<tr>
<td>Spark 700 (HMF)</td>
<td>1810 g</td>
</tr>
<tr>
<td>Spark 900 (HMF)</td>
<td>1779 g</td>
</tr>
</tbody>
</table>

With our Evo-Lap technology we model the frame to optimize the surface area, simulate tube structures with different ply orientations, observe the results of using different configurations, and test the stress distribution in different areas of the frame.

Thanks to this extensive computer modeling, we’ve optimized the carbon layers in all the parts of our frame. When the parts were bonded together in the first prototypes, the result was a super light and compact frame without a sacrifice in the stiffness, comfort or impact resistance. The entire range benefited from our EvoLap technology, so the HMX and HMF frames save in terms of weight, respectively 217 grams and 166 grams.

Y560 grade is intensively used in the aerospace industry due to high stiffness properties. We call this specific application of carbon the “stiffness layer” to call out the stiffness enhancements that specific areas, like the down tube or chain stay, can get from this material.

The HR40 in particular is the high modulus carbon fiber that allows our frames to reach such a high stiffness-to-weight ratios. The elastic modulus for this composite is much higher compared to the standard modulus carbon. As result this composite is approximately 1.5 times stiffer than standard modulus carbon fiber.

The W190D used in our HMX-SL frame is one of the most advanced high performance carbon fiber with many applications in the car and aeronautics industry. This composite has incredibly high values of strength. Thanks to this feature, it is possible to create thin-walled carbon structures while maintaining high levels of rigidity and strength.
The key to designing such a simple rear triangle was maintaining a fully tubular construction, without a pivot in the dropout area. To allow the seatstays to flex freely as the suspension compresses, we've introduced a specific brake mount anchored directly to the chain stay and the wheel axle. Thanks to this solution the carbon structure is cleaner and lighter and the flexion of the rear triangle on the brake side is not inhibited. The brake mount is available in two versions, one for 160mm rotors and one for 180mm.

The Spark carbon linkage is constructed with a compression moulding process. It’s 37g lighter than the aluminium equivalent and half the weight of the previous Spark linkage. Making the link in two pieces means all excess material can be removed from the inside of the linkage, without sacrificing stiffness.

When the components evolve, bike frames can be made to take full advantage from the characteristics of the new products. Following this idea and in response to different requests coming from the riders we’ve engineered two different frames: one that accommodates only a single chain ring and one for the more traditional double chain ring setup.

The single chain ring setup is considered most appropriate for racers and riders that are looking for pure performance so this 1X specific design is used on the HMX-SL and HMX frames.

Appealing more broadly to enthusiasts and casual riders, the HMF frame series has been designed for 2X setups but can easily accommodate a single chain ring configuration while maintaining a clean look.

The pivotless swingarm design enables the rear triangle to be moulded in two continuous tubular carbon parts saving considerable weight.

The rear triangle of the previous Spark consisted of 18 separate parts. The new rear triangle is constructed from a single left and right hand moulded carbon part, plus a separate brake mount. We use less metal, with fewer joints, and less hardware. Thanks to the new simplicity of the construction, we save 130g.

The key to designing such a simple rear triangle was maintaining a fully tubular construction, without a pivot in the dropout area.

To allow the seatstays to flex freely as the suspension compresses, we’ve introduced a specific brake mount anchored directly to the chain stay and the wheel axle. Thanks to this solution the carbon structure is cleaner and lighter and the flexion of the rear triangle on the brake side is not inhibited. The brake mount is available in two versions, one for 160mm rotors and one for 180mm.

When the components evolve, bike frames can be made to take full advantage from the characteristics of the new products. Following this idea and in response to different requests coming from the riders we’ve engineered two different frames: one that accommodates only a single chain ring and one for the more traditional double chain ring setup.

The single chain ring setup is considered most appropriate for racers and riders that are looking for pure performance so this 1X specific design is used on the HMX-SL and HMX frames.

The Spark carbon linkage is constructed with a compression moulding process. It’s 37g lighter than the aluminium equivalent and half the weight of the previous Spark linkage. Making the link in two pieces means all excess material can be removed from the inside of the linkage, without sacrificing stiffness.

The Spark RC frames benefit even greater thanks to 1X design. We can build the frame in this area even stiffer. There are no FD clearance constraints.

The pivotless swingarm design enables the rear triangle to be moulded in two continuous tubular carbon parts saving considerable weight.
We have adopted the new Metric shock sizing standards with a Trunnion mount. Since the shock body now extends between the two lower mounting bolts, our suspension partners have more design space. This means the shock has more stroke for the same eye to eye length. Stroke on the 165mm eye to eye shock has increased from 38mm to 40/45mm. The Trunnion standard also offers structural gains. The shorter shock enables us to build a very compact frame and shock package, which integrates tightly to the seat tube.

We managed to have a very tiny yet stiff linkage—lighter than ever. Thanks to the Trunnion mount construction, stand over height on the new Spark is very low. We are still able to realize a supercompact full-suspension frame and provide the ability to mount both a small and big water bottle.

The Spark family maintains the 165mm eye-to-eye shock length of the previous Spark 900 (our shortest shock), but realizes up to 7mm more shock stroke.

All Spark RC and most Spark and Spark Plus bikes utilize the FOX Nude shock, specially made for SCOTT:

- 165mm Metric Trunnion shock
- 40mm (100mm travel RC Spark line-up) vs. 38mm (old Spark)
- 45mm (120mm travel Spark line-up)

The Spark down tube shock and linkage are clearly asymmetric, when looking from the top of the bike. Carbon fibres achieve their full potential when used in smooth straight lines. Offsetting the shock slightly to the left hand side of the bike gives a clean and continuous structure from the down tube through the shock mount to the main pivot.

By turning the Trunnion shock upside-down, we can fully integrate it into the frame which results in several benefits. Since the Trunnion mount is the same width as the down tube and main pivot, we can have a very clean frame design in this critical area. The lack of tight transitions and small details allows for an efficient, continuous carbon structure. Carbon material added to reinforce the shock mount also stiffens the connection between the down tube, main pivot and bottom bracket, a key stiffness path.

The flipped shock also lowers the frame’s center of gravity helping to give a more planted feel when riding. Unsprung mass is reduced since it is the lighter part of the shock, connected to the linkage, not the heavier body which must move during an impact – the suspension system can react faster. Our TwinLoc remote cable can be routed cleanly into the down tube.

TRUNNION MOUNT—ADVANCED SHOCK MOUNT CONSTRUCTION

ASYMMETRIC DESIGN
Boost is a hub and drivetrain standard developed by SRAM. Boost is built around a wider rear and front hub and enables stiffer wheels due to a wider spoke bracing angle. Boost 148 rear hubs move each flange of the rear hub three millimeters wider. Boost is designed as a complete system so drivetrain performance isn’t compromised. Even though Boost pushes the cogs three millimeters outboard, the crankarm Q-Factor remains the same as the Boost system’s crankset utilizes front chainrings that sit a corresponding 3mm outward to ensure the required chainline. Boost cranks can only be used when paired with a 148mm hub. On the front the hub spacing is increased by 10mm to 110mm.

Increased wheel stiffness and greater clearance for bigger tires are the main advantages of Boost technology. On the Spark project, we wanted to go beyond the basics and reap all the benefits of this innovation by optimizing frame design and geometry.

The 3 mm outboard chain ring adds clearance in the chain stay area that allows a substantial increase of the chain stay tube cross-section. Correspondingly, the stiffness in this part of the frame improves.

Also, with a wider range of positions for the rear wheel, the frame geometry can be adjusted. We can shorten the chainstays for more agile handling.
Looking back at SCOTT’s history of mountain bike development, it becomes quite obvious that our knowledge with full suspension systems has been ever growing. We’ve been building bikes with several different suspension systems for many years. Our approach has always been to combine the best possible suspension with the lightest and stiffest frame. The cold hard truth is that suspension systems are getting better all the time. We want to bring the lightest and most capable bikes to market. New technology means better performance and ride quality, which translates directly into a better riding experience. All of this is confirmed when riders come to us and tell us that they can feel the difference.

If you are a rider who is looking to get into full suspension, then our new Spark is the bike for you. We have worked hard to ensure that the Spark is the perfect blend of performance, comfort and durability. The bike has been designed to provide a smooth ride over rough terrain while offering excellent control and handling. With its light weight and adjustable settings, the Spark is the perfect choice for any rider looking to upgrade their bike.

The Spark has a unique几何和悬挂设置, allowing riders to customize their experience depending on the terrain they are riding on. This flexibility is key in ensuring that riders can enjoy a comfortable and enjoyable ride no matter where they are going.

With the Spark, we have also made some improvements to our suspension system. We have added a new TwinLoc lever system that allows riders to switch between three different modes: Traction, Neutral and Lockout. This means that riders can adjust their suspension settings on the fly, allowing them to optimize their ride experience.

In conclusion, the new Spark is the perfect choice for riders looking for a lightweight, comfortable and customizable full suspension bike. Whether you are a beginner or an experienced rider, the Spark has something to offer. So why not give it a try and see for yourself why it is the perfect bike for you?
INTERNAL CABLE ROUTING

To provide a clean look and a functional solution for all the different control cable standards on the market, cable routing is fully internal and designed for full length cable housing. Routing the cables internally omits bulky external hardware and looks cleaner. The cables can endure a longer lifetime as they are protected within the frame.

The entry points are machined alloy removable inserts that come along with the frame and can be chosen according to the setup of the bike. Assembling an electronic group or a dropper post will not be a problem and the look will always be clean-cut.

SW DROPOUTS

On the previous model the support of the dropout was a bulky additional part molded to the carbon chain stay. The new Spark dropouts are designed to be integrated on the thru-axle system thanks to a hollow tubular design that allows a simple and lightweight structure. Available for SRAM and Shimano DM derailleurs, this dropout increases the stiffness and avoids damage to the frame in case of impacts on the rear derailleur.

IDS SL DROPOUT

SW DROPOUT

AXLE TOOL

Working together with DT Swiss, we completely revisited the shape of the thru-axle lever to make it more ergonomic and to perfectly fit to our frame. Additionally we introduce a new multifunctional tool integrated on the inner part of the thru-axle itself. This 25T torx wrench is easy to reach and ready to be used for quick adjustments on the trails.

SCOTT CHAIN GUIDE

Our integrated chain guide was developed in collaboration with the SCOTT ODLO MTB Racing Team.

The idea behind was to create a reliable component that helps to avoid dropping chains but that was light, versatile and integrated in the design of the frame. The new Spark chain guide weighs just 23 grams and is easy to assemble thanks to the smart assembly system and can accommodate chain rings from 30 to 36 teeth.

GARMIN MOUNT

The integrated Garmin mount extends the reaches of integration into the realm of accessory products.

Our goal was to create a computer mount solution for our bikes that is as seamless as it is sleek. We worked on a balanced, minimalist design that secures a Garmin computer right where you need it while also making it unnoticeable when the trail requires your full attention. Easily added or removed with a single torx bolt, the Garmin mount comes in two sizes to guarantee a premium fit regardless of your choice of stem.
SYNCROS
SL LINE

SL CONCEPT
Saving grams has been our mission in developing our high-end frames, so we decided to extend this research of lightness also to other components. Following this idea we’ve worked together with Syncros to develop the SL components line that follows the same philosophy of our new bikes:

- REDUCE THE WEIGHT
- ADD MORE COMFORT
- INCREASE THE STRUCTURAL RIGIDITY

To reach those goals we went through several tests with our athletes and EFBE, a German independent test company that validates the characteristics of our products.

XR STEM
The new range of XR and FL 3D forged stems share the same concept of integration of the spacers developed to work together with a specific upper bearing cup that helps to provide a clean design. A set of specific spacers necessary to adjust the handlebar stack according to the riding preferences is supplied with every bike in the range.

The front plate is designed to be assembled with no gap on the upper interface. To avoid damage to the handlebar, the inner shape has no sharp radiuses. The stem top cap is integrated in the body and the T25 adjusting bolt is fully compatible with headset preload systems. Both the stems are equipped with the same bolts on the front plate and the steerer clamps. T25 bolts with spring washers guarantee a solid fixation and in the meantime they can be easily adjusted with the X tool integrated in the rear axle lever of the new Scale and Spark.

In order to maintain a sleek interface with Garmin units, we’ve developed an integrated mount support included with the high end versions of the stem and available aftermarket. XR and FL series stems are available aftermarket in 5 lengths (50-60-70-80-90mm) and two different versions: 1.5 and 2.0 models share the same design but a different alloy and paint finish.

FL STEM
FL 1.5 stem assembled on the 650b models includes the Flip Flop patented design that allows a choice of angle between +6 / -6 degrees. On the other hand, the XR line-up is designed specifically around the new Scale 900 series geometry and has an aggressive fixed angle of -8 degrees.

THE NEW T-BAR
Handlebar included is available with a 720mm length and a 9° backsweep. To reduce the clamping forces of the components assembled on the handlebar we’ve included a new textured treatment at the ends.

THE NEW SL SADDLE
is an optimized version of our high-end XR 1.0 model. We maintain almost the same shape but we reduce the length of almost 1.5 cm and use a carbon lay-up for the shell.

The saddle is 10% lighter than the previous model and at the same time stiffer and stronger. Syncros adjusted the carbon orientation of the fibers in the shell to get better comfort thanks to controlled flex in the key places that add vibration absorption and reduce the undesired lag in the shell when the rider sits on the saddle.

This saddle is available aftermarket in two different widths.

THE SL SEAT POST
has a new carbon lay-up that is 10% lighter compared to the previous model. The seat post is available in two different offsets (25mm and 10mm) and two different diameters (27.2mm and 31.6mm) with a length of 400mm for both the models.

THE NEW SL SADDLE

THE NEW T-BAR

The new range of XR and FL 3D forged stems share the same concept of integration of the spacers developed to work together with a specific upper bearing cup that helps to provide a clean design. A set of specific spacers necessary to adjust the handlebar stack according to the riding preferences is supplied with every bike in the range.

The front plate is designed to be assembled with no gap on the upper interface. To avoid damage to the handlebar, the inner shape has no sharp radiuses. The stem top cap is integrated in the body and the T25 adjusting bolt is fully compatible with headset preload systems. Both the stems are equipped with the same bolts on the front plate and the steerer clamps. T25 bolts with spring washers guarantee a solid fixation and in the meantime they can be easily adjusted with the X tool integrated in the rear axle lever of the new Scale and Spark.

In order to maintain a sleek interface with Garmin units, we’ve developed an integrated mount support included with the high end versions of the stem and available aftermarket. XR and FL series stems are available aftermarket in 5 lengths (50-60-70-80-90mm) and two different versions: 1.5 and 2.0 models share the same design but a different alloy and paint finish.

With a weight of 135 grams (50mm length), the FL 1.5 stem assembled on the 650b models includes the Flip Flop patented design that allows a choice of angle between +6 / -6 degrees. On the other hand, the XR line-up is designed specifically around the new Scale 900 series geometry and has an aggressive fixed angle of -8 degrees.

Based on our racing experience, we know that the cockpit is a critical area and some riders would prefer a different stem. As consequence we maintain the full compatibility of the frame with the standard stems and spacers available on the market.
GEOMETRY

We've brought the Spark up to date with our own interpretation of modern race bike geometry. By splitting the Spark family into three distinct models we were able to tailor specific geometry for a wide range of riders and applications. The family shares some fundamental characteristics which make every bike a Spark.

CONTROL

We now have a slacker head angle and shorter stem lengths across the range for better high speed stability and direct steering control. Incorporating the Boost standard allowed us to build a shorter rear triangle for agile cornering. The reduction in chain stay length is especially significant on 29" models. At the same time as shortening the rear triangle, we've steepened the seat tube to balance weight distribution.

FIT

Thanks to our new frame design and shock placement standover clearance is improved and the frame's center of gravity is lowered. Our racers want the lowest possible cockpit so we've given them the space to do so by minimizing stack height. Racers can now easily achieve their race fit on a 29" model. Trail riders can still use a taller stem and bar to suit their preference. Longer reaches combined with shorter stem mean riders can achieve their familiar cockpit fit.

SPARK FRAME PLATFORM - WHEELSIZES, TRAVEL, FRAME MATERIAL

| SPARK RC 900 | PREVIOUS SPARK 900 |

IMPROVED CONTROL

SLACKER HT ANGLE (1.3° SLACKER) 68.5°
SHORTER CST LENGTH (10mm shorter, only 10mm longer than Spark RC 900) 435 mm
STEAPER ST ANGLE (1-STEEPER) 73.8°

IMPROVED RACE FIT

LONGER REACH (17mm) 429.5 mm
LOWER STACK (17mm) 586.9 mm
SHORTER STEM (10mm) 70 mm
LOWER STANDOVER 28 mm

Comparing previous Spark 900 with new Spark RC 900 (both 100mm travel, size M)
SPARK 950 | 750

Available In

- **Price**: 249548 / SPARK 750 / 249531
- **Tech & Facts Report**

Frame

- Spark 950 / 750 Carbon Fiber (29"")
- Spark 950 / 750 Carbon Fiber (27"")

Fork

- Remote System
- Ref. SPARK 750
- Spark 3 Alloy SL 6011

Headset

- Spark Plus Carbon / IMP technology / HMF Mainframe
- HMF Mainframe / Boost 148x12mm

Travel

- 120 - 85 - Lockout / 165X45mm
- 120mm
- 165X45mm

Dropouts

- Boost 148x12mm
- 141x5mm

Brakes

- Shimano M9120 Rotor
- Shimano Deore SL-M7000-10 SGS
- Shimano Deore SL-M610-I / Rapidfire Plus

Crankset

- Shimano XT M8000 Disc
- Shimano XT FD-M8020-D / side swing
- Shimano XT FD-M8020-D / side swing

Hubs

- Shimano HB-M618 CL / 15x100mm
- Shimano FH-M618-B CL / Boost 12x148mm

Rims

- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Tires

- Maxxis Forekaster / 2.35 / 60TPI
- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Weight

- 700 Series: Stainless Black 15G / 1.8mm
- Syncros FL2.0 T-Bar / Alloy 6061
- T shape Flat / 9° / 740mm

SPARK 960 | 760

Available In

- **Price**: 249549 / SPARK 760 / 249532
- **Tech & Facts Report**

Frame

- Spark 960 / 760 Carbon Fiber (29"")
- Spark 960 / 760 Carbon Fiber (27"")

Fork

- Remote System
- Ref. SPARK 760
- Spark 3 Alloy SL 6011

Headset

- Spark Plus Carbon / IMP technology / HMF Mainframe
- HMF Mainframe / Boost 148x12mm

Travel

- 120 - 85 - Lockout / 165X45mm
- 120mm
- 165X45mm

Dropouts

- Boost 148x12mm
- 141x5mm

Brakes

- Shimano M9120 Rotor
- Shimano Deore SL-M7000-10 SGS
- Shimano Deore SL-M610-I / Rapidfire Plus

Crankset

- Shimano XT M8000 Disc
- Shimano XT FD-M8020-D / side swing
- Shimano XT FD-M8020-D / side swing

Hubs

- Shimano HB-M618 CL / 15x100mm
- Shimano FH-M618-B CL / Boost 12x148mm

Rims

- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Tires

- Maxxis Forekaster / 2.35 / 60TPI
- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Weight

- 700 Series: Stainless Black 15G / 1.8mm
- Syncros FL2.0 T-Bar / Alloy 6061
- T shape Flat / 9° / 740mm

SPARK 700 PLUS TUNED

Available In

- **Price**: 249553
- **Tech & Facts Report**

Frame

- Spark 700 Plus Tuned / Carbon Fiber / 29"
- Spark 700 Plus Tuned / Carbon Fiber / 27"

Fork

- Remote System
- Ref. SPARK 700 Plus Tuned
- Spark 3 Alloy SL 6011

Headset

- Spark Plus Carbon / IMP technology / HMF Mainframe
- HMF Mainframe / Boost 148x12mm
- FOX 34 Float Performance Elite Air

Travel

- 120 - 85 - Lockout / 165X45mm
- 120mm
- 165X45mm

Dropouts

- Boost 148x12mm
- 141x5mm

Brakes

- Shimano M9120 Rotor
- Shimano Deore SL-M7000-10 SGS
- Shimano Deore SL-M610-I / Rapidfire Plus

Crankset

- Shimano XT M8000 Disc
- Shimano XT FD-M8020-D / side swing
- Shimano XT FD-M8020-D / side swing

Hubs

- Shimano HB-M618 CL / 15x100mm
- Shimano FH-M618-B CL / Boost 12x148mm

Rims

- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Tires

- Maxxis Forekaster / 2.35 / 60TPI
- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Weight

- 700 Series: Stainless Black 15G / 1.8mm
- Syncros FL2.0 T-Bar / Alloy 6061
- T shape Flat / 9° / 740mm

SPARK 710 PLUS

Available In

- **Price**: 249554
- **Tech & Facts Report**

Frame

- Spark 710 Plus / Carbon Fiber / 29"
- Spark 710 Plus / Carbon Fiber / 27"

Fork

- Remote System
- Ref. SPARK 710 Plus
- Spark 3 Alloy SL 6011

Headset

- Spark Plus Carbon / IMP technology / HMF Mainframe
- HMF Mainframe / Boost 148x12mm
- FOX 34 Float Factory Air / Kashima

Travel

- 120 - 85 - Lockout / 165X45mm
- 120mm
- 165X45mm

Dropouts

- Boost 148x12mm
- 141x5mm

Brakes

- Shimano M9120 Rotor
- Shimano Deore SL-M7000-10 SGS
- Shimano Deore SL-M610-I / Rapidfire Plus

Crankset

- Shimano XT M8000 Disc
- Shimano XT FD-M8020-D / side swing
- Shimano XT FD-M8020-D / side swing

Hubs

- Shimano HB-M618 CL / 15x100mm
- Shimano FH-M618-B CL / Boost 12x148mm

Rims

- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Tires

- Maxxis Forekaster / 2.35 / 60TPI
- Syncros X-23 / 32H / Tubeless ready
- Syncros XR2.5

Weight

- 700 Series: Stainless Black 15G / 1.8mm
- Syncros FL2.0 T-Bar / Alloy 6061
- T shape Flat / 9° / 740mm

SPARK 720 PLUS

- **Frame**: Syncros FL1.5 Drop in / Tapered 1.5” - 1 1/8"
- **Fork**: FOX NUDE Trunnion / 3 modes: Lockout - Traction Control - Descend / Reb. Adj. / Lockout / 130mm travel / 165x40mm DPS / EVOL
- **Brakes**: Shimano M615 Disc / 180mm F & R / SM-RT64 CL Rotor
- **Crankset**: Shimano XT FC-M8000-B2 / 180mm F & R / SM-RT64 CL Rotor
- **Gears**: Shimano XT RD-M8000 SGS / 20 Speed
- **Chain**: KMC X10
- **Shimano Deore SL-M610 / Rapidfire Plus / Shadow Type / 20 Speed
- **Weight**: 12mm rise / 9° / 720mm 30T

SPARK 730 PLUS

- **Frame**: Syncros FL1.5 / 31.8mm / -6°/ 1 1/8”
- **Fork**: FOX NUDE Trunnion / 3 modes: Lockout - Traction Control - Descend / Reb. Adj. / Lockout / 130mm travel / 165x40mm DPS / EVOL
- **Brakes**: Shimano M615 Disc / 180mm F & R / SM-RT64 CL Rotor
- **Crankset**: Shimano XT FC-M8000-B2 / 180mm F & R / SM-RT64 CL Rotor
- **Gears**: Shimano XT RD-M8000 SGS / 20 Speed
- **Chain**: KMC X10
- **Weight**: 12mm rise / 9° / 720mm 30T

CONTESSA SPARK RC 700

- **Frame**: Shimano XT FD-M8020-D / side swing / 180mm F & R / SM-RT64 CL Rotor
- **Crankset**: Shimano XT M8000 Disc / 180mm F & R / SM-RT64 CL Rotor
- **Gears**: Shimano XT SL-M8000-I / Shimano XT FD-M8020-D / side swing / 180mm F & R / SM-RT64 CL Rotor
- **Chain**: Shimano CN-HG601
- **Weight**: Syncros XR RC / 28H / Tubeless ready / 3C Maxx Terra / PaceStar compound
- **Hub (Front)**: Shimano HB-M618-B CL / 15x110mm
- **Hub (Rear)**: Syncros XM2.5 / Boost 148x12mm
- **Cassette**: Shimano XT CS-M8000 / 11-42 T / Tubeless ready / 3C Maxx Terra / PaceStar compound

CONTESSA SPARK 700

- **Frame**: Shimano XT FD-M8020-D / side swing / 180mm F & R / SM-RT64 CL Rotor
- **Crankset**: Shimano XT M8000 Disc / 180mm F & R / SM-RT64 CL Rotor
- **Gears**: Shimano XT SL-M8000-I / Shimano XT FD-M8020-D / side swing / 180mm F & R / SM-RT64 CL Rotor
- **Chain**: Shimano CN-HG601
- **Weight**: Syncros XR RC / 28H / Tubeless ready / 3C Maxx Terra / PaceStar compound
- **Hub (Front)**: Shimano HB-M618-B CL / 15x110mm
- **Hub (Rear)**: Syncros XM2.5 / Boost 148x12mm
- **Cassette**: Shimano XT CS-M8000 / 11-42 T / Tubeless ready / 3C Maxx Terra / PaceStar compound
CONTESSA SPARK 720 PLUS

AVAILABLE IN Spark Plus Alloy SL 6011 custom butted Hydroformed tubes tapering Headtube / BB92 / DM hanger dropouts for 148x12mm.FORK

FOX 34 Float Rhythm Grip3 / 3-Modes / 15x110mm QR axle / tapered steerer Reb. Adj. / Lockout / 130mm travel. REAR SHOCK

FOX Float Trunnion Contessa Custom Tune w. travel / geo adj. 3 modes: Lockout - Traction Control - Descend DPS / Reb. Adj. Travel 120 - 85 - Lockout / 165X45mm.REMOTE SYSTEM

SCOTT TwinLoc Remote Technology 3 modes / integ. Grip clamp. HEADSET

Syncros Pro Drop in / Tapered 1.5” - 1 1/8” bearing diameter size 42mm and 52mm.

FRONT DERAILLEUR

Shimano Deore FD-M617-D / side swing

SHIFTERS

Shimano Deore SL-M610 Rapidfire Plus / 2 way release w/gear indicator.BRAKES

Shimano M506 Disc 180 F & R / SM-RT54 CL Rotor

CRANKSET

Shimano Deore FC-M627-B2 2-piece Design / 36x22 T BB-SET

Shimano BB-MT500-PA shell 41x89.5mm.HANDLEBAR

Syncros FL2.0 mini Riser / Alloy 7050D.B. 12mm rise / 9° / 740mm Syncros Women Pro Lock-On.HANDLEBAR STEM

Syncros 6061 Alloy oversize 31.8mm / 1 1/8” / 6°.SEATPOST

Syncros Dropper 2.0 / YSP12 ICR / Remote 31.6mm / S size 100mm / M, L 120mm

SEAT

Syncros XR2.5 Women.HUB (FRONT)

Shimano HB-M618-B CL / 15x110mm.HUB (REAR)

Shimano FH-M618-B CL / Boost 12x148mm / RWS axle

CHAIN

KMC X10

CASSETTE

Shimano CS-HG50-10 / 11-36 T SPOKES

Stainless Black 15G / 1.8mm RIMS

Syncros X35 / 32H / 35mm Tubeless ready.TIRES

Maxxis Rekon 2.80 x 27.5 / 60TPI Kevlar Bead TR Tubeless ready Dual compound

WEIGHT

Check website

SPARK 900 RC: SL, ULTIMATE, WORLD CUP, PRO

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A HEAD TUBE ANGLE</td>
<td>68.5°</td>
<td>68.5°</td>
<td>68.5°</td>
</tr>
<tr>
<td>B HEAD TUBE LENGTH</td>
<td>95.0 mm 3.7 in</td>
<td>95.0 mm 3.7 in</td>
<td>105.0 mm 4.1 in</td>
</tr>
<tr>
<td>C TOP TUBE HORIZONTAL</td>
<td>570.0 mm 22.4 in</td>
<td>600.0 mm 23.6 in</td>
<td>630.0 mm 24.8 in</td>
</tr>
<tr>
<td>D STANDOVER HEIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E BB OFFSET</td>
<td>-50.5 mm -2.0 in</td>
<td>-50.5 mm -2.0 in</td>
<td>-50.5 mm -2.0 in</td>
</tr>
<tr>
<td>F BB HEIGHT</td>
<td>319.5 mm 12.6 in</td>
<td>319.5 mm 12.6 in</td>
<td>319.5 mm 12.6 in</td>
</tr>
<tr>
<td>G WHEEL BASE</td>
<td>1,097.7 mm 43.2 in</td>
<td>1,127.7 mm 44.4 in</td>
<td>1,158.6 mm 45.6 in</td>
</tr>
<tr>
<td>H BB CENTER TO TOPTUBE CENTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I BB CENTER TO TOP OF SEATTUBE</td>
<td>345.0 mm 13.6 in</td>
<td>375.0 mm 14.8 in</td>
<td>425.0 mm 16.7 in</td>
</tr>
<tr>
<td>J SEAT ANGLE</td>
<td>73.8°</td>
<td>73.8°</td>
<td>73.8°</td>
</tr>
<tr>
<td>K CHAINSTAY</td>
<td>435.0 mm 17.1 in</td>
<td>435.0 mm 17.1 in</td>
<td>435.0 mm 17.1 in</td>
</tr>
<tr>
<td>L REACH</td>
<td>399.5 mm 15.7 in</td>
<td>429.5 mm 16.9 in</td>
<td>456.8 mm 18.0 in</td>
</tr>
<tr>
<td>M STACK</td>
<td>586.9 mm 23.1 in</td>
<td>586.9 mm 23.1 in</td>
<td>596.2 mm 23.5 in</td>
</tr>
<tr>
<td>N STEM LENGTH</td>
<td>55.0 mm 2.2 in</td>
<td>70.0 mm 2.8 in</td>
<td>80.0 mm 3.1 in</td>
</tr>
<tr>
<td>O TRAIL</td>
<td>91.2 mm 3.6 in</td>
<td>91.2 mm 3.6 in</td>
<td>91.2 mm 3.6 in</td>
</tr>
</tbody>
</table>

SPARK 700 RC: SL, ULTIMATE, WORLD CUP, PRO

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A HEAD TUBE ANGLE</td>
<td>68.5°</td>
<td>68.5°</td>
</tr>
<tr>
<td>B HEAD TUBE LENGTH</td>
<td>90.0 mm 3.5 in</td>
<td>100.0 mm 3.9 in</td>
</tr>
<tr>
<td>C TOP TUBE HORIZONTAL</td>
<td>570.0 mm 22.4 in</td>
<td>600.0 mm 23.6 in</td>
</tr>
<tr>
<td>D STANDOVER HEIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E BB OFFSET</td>
<td>-34.0 mm -1.3 in</td>
<td>-34.0 mm -1.3 in</td>
</tr>
<tr>
<td>F BB HEIGHT</td>
<td>317.5 mm 12.5 in</td>
<td>317.5 mm 12.5 in</td>
</tr>
<tr>
<td>G WHEEL BASE</td>
<td>1,082.3 mm 42.6 in</td>
<td>1,112.8 mm 43.8 in</td>
</tr>
<tr>
<td>H BB CENTER TO TOPTUBE CENTER</td>
<td>345.0 mm 13.6 in</td>
<td>375.0 mm 14.8 in</td>
</tr>
<tr>
<td>I BB CENTER TO TOP OF SEATTUBE</td>
<td>410.0 mm 16.1 in</td>
<td>440.0 mm 17.3 in</td>
</tr>
<tr>
<td>J SEAT ANGLE</td>
<td>73.5°</td>
<td>73.5°</td>
</tr>
<tr>
<td>K CHAINSTAY</td>
<td>425.0 mm 16.7 in</td>
<td>425.0 mm 16.7 in</td>
</tr>
<tr>
<td>L REACH</td>
<td>403.9 mm 15.9 in</td>
<td>432.5 mm 17.0 in</td>
</tr>
<tr>
<td>M STACK</td>
<td>560.8 mm 22.1 in</td>
<td>565.4 mm 22.3 in</td>
</tr>
<tr>
<td>N STEM LENGTH</td>
<td>60.0 mm 2.4 in</td>
<td>70.0 mm 2.8 in</td>
</tr>
<tr>
<td>O TRAIL</td>
<td>91.2 mm 3.6 in</td>
<td>91.2 mm 3.6 in</td>
</tr>
</tbody>
</table>
SPARK: 900 ULTIMATE, 900 PREMIUM, 900, 910, 920, 930, 940, 950, 960

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>HEAD TUBE ANGLE</td>
<td>67.0°</td>
<td>67.0°</td>
</tr>
<tr>
<td>B</td>
<td>HEAD TUBE LENGTH</td>
<td>100.0 mm</td>
<td>105.0 mm</td>
</tr>
<tr>
<td>C</td>
<td>TOP TUBE HORIZONTAL</td>
<td>576.9 mm</td>
<td>607.0 mm</td>
</tr>
<tr>
<td>D</td>
<td>STANDOVER HEIGHT</td>
<td>409.7 mm</td>
<td>438.4 mm</td>
</tr>
<tr>
<td>E</td>
<td>BB OFFSET</td>
<td>-34.0 mm</td>
<td>-36.0 mm</td>
</tr>
<tr>
<td>F</td>
<td>BB HEIGHT</td>
<td>325.5 mm</td>
<td>329.0 mm</td>
</tr>
<tr>
<td>G</td>
<td>WHEEL BASE</td>
<td>1,115.2 mm</td>
<td>1,145.8 mm</td>
</tr>
<tr>
<td>H</td>
<td>BB CENTER TO TOPTUBE CENTER</td>
<td>345.0 mm</td>
<td>375.0 mm</td>
</tr>
<tr>
<td>I</td>
<td>BB CENTER TO TOP OF SEATTUBE</td>
<td>410.0 mm</td>
<td>440.0 mm</td>
</tr>
<tr>
<td>J</td>
<td>SEAT ANGLE</td>
<td>73.5°</td>
<td>73.5°</td>
</tr>
<tr>
<td>K</td>
<td>CHAINSTAY</td>
<td>428.0 mm</td>
<td>428.0 mm</td>
</tr>
<tr>
<td>L</td>
<td>REACH</td>
<td>402.7 mm</td>
<td>432.7 mm</td>
</tr>
<tr>
<td>M</td>
<td>STACK</td>
<td>560.8 mm</td>
<td>565.4 mm</td>
</tr>
<tr>
<td>N</td>
<td>STEM LENGTH</td>
<td>50.0 mm</td>
<td>60.0 mm</td>
</tr>
<tr>
<td>O</td>
<td>TRAIL</td>
<td>100.2 mm</td>
<td>100.2 mm</td>
</tr>
</tbody>
</table>

SPARK PLUS: 700 TUNED, 710, 720, 730

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>HEAD TUBE ANGLE</td>
<td>67.0°</td>
<td>67.0°</td>
</tr>
<tr>
<td>B</td>
<td>HEAD TUBE LENGTH</td>
<td>100.0 mm</td>
<td>105.0 mm</td>
</tr>
<tr>
<td>C</td>
<td>TOP TUBE HORIZONTAL</td>
<td>576.9 mm</td>
<td>607.0 mm</td>
</tr>
<tr>
<td>D</td>
<td>STANDOVER HEIGHT</td>
<td>409.7 mm</td>
<td>438.4 mm</td>
</tr>
<tr>
<td>E</td>
<td>BB OFFSET</td>
<td>-34.0 mm</td>
<td>-36.0 mm</td>
</tr>
<tr>
<td>F</td>
<td>BB HEIGHT</td>
<td>325.5 mm</td>
<td>329.0 mm</td>
</tr>
<tr>
<td>G</td>
<td>WHEEL BASE</td>
<td>1,115.2 mm</td>
<td>1,145.8 mm</td>
</tr>
<tr>
<td>H</td>
<td>BB CENTER TO TOPTUBE CENTER</td>
<td>345.0 mm</td>
<td>375.0 mm</td>
</tr>
<tr>
<td>I</td>
<td>BB CENTER TO TOP OF SEATTUBE</td>
<td>410.0 mm</td>
<td>440.0 mm</td>
</tr>
<tr>
<td>J</td>
<td>SEAT ANGLE</td>
<td>73.5°</td>
<td>73.5°</td>
</tr>
<tr>
<td>K</td>
<td>CHAINSTAY</td>
<td>428.0 mm</td>
<td>428.0 mm</td>
</tr>
<tr>
<td>L</td>
<td>REACH</td>
<td>402.7 mm</td>
<td>432.7 mm</td>
</tr>
<tr>
<td>M</td>
<td>STACK</td>
<td>560.8 mm</td>
<td>565.4 mm</td>
</tr>
<tr>
<td>N</td>
<td>STEM LENGTH</td>
<td>50.0 mm</td>
<td>60.0 mm</td>
</tr>
<tr>
<td>O</td>
<td>TRAIL</td>
<td>100.2 mm</td>
<td>100.2 mm</td>
</tr>
</tbody>
</table>

CONTESSA SPARK PLUS: 700, 710, 720, 730

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>HEAD TUBE ANGLE</td>
<td>66.9°</td>
<td>66.9°</td>
</tr>
<tr>
<td>B</td>
<td>HEAD TUBE LENGTH</td>
<td>95.0 mm</td>
<td>95.0 mm</td>
</tr>
<tr>
<td>C</td>
<td>TOP TUBE HORIZONTAL</td>
<td>570.0 mm</td>
<td>600.0 mm</td>
</tr>
<tr>
<td>D</td>
<td>STANDOVER HEIGHT</td>
<td>403.9 mm</td>
<td>432.5 mm</td>
</tr>
<tr>
<td>E</td>
<td>BB OFFSET</td>
<td>-34.0 mm</td>
<td>-34.0 mm</td>
</tr>
<tr>
<td>F</td>
<td>BB HEIGHT</td>
<td>325.5 mm</td>
<td>329.0 mm</td>
</tr>
<tr>
<td>G</td>
<td>WHEEL BASE</td>
<td>1,105.6 mm</td>
<td>1,135.2 mm</td>
</tr>
<tr>
<td>H</td>
<td>BB CENTER TO TOPTUBE CENTER</td>
<td>345.0 mm</td>
<td>375.0 mm</td>
</tr>
<tr>
<td>I</td>
<td>BB CENTER TO TOP OF SEATTUBE</td>
<td>400.0 mm</td>
<td>430.0 mm</td>
</tr>
<tr>
<td>J</td>
<td>SEAT ANGLE</td>
<td>73.2°</td>
<td>73.2°</td>
</tr>
<tr>
<td>K</td>
<td>CHAINSTAY</td>
<td>428.0 mm</td>
<td>428.0 mm</td>
</tr>
<tr>
<td>L</td>
<td>REACH</td>
<td>396.3 mm</td>
<td>426.4 mm</td>
</tr>
<tr>
<td>M</td>
<td>STACK</td>
<td>598.1 mm</td>
<td>598.1 mm</td>
</tr>
<tr>
<td>N</td>
<td>STEM LENGTH</td>
<td>50.0 mm</td>
<td>60.0 mm</td>
</tr>
<tr>
<td>O</td>
<td>TRAIL</td>
<td>91.2 mm</td>
<td>91.2 mm</td>
</tr>
</tbody>
</table>

CONTESSA SPARK: 700 RC

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>HEAD TUBE ANGLE</td>
<td>67.2°</td>
<td>67.2°</td>
</tr>
<tr>
<td>B</td>
<td>HEAD TUBE LENGTH</td>
<td>95.0 mm</td>
<td>95.0 mm</td>
</tr>
<tr>
<td>C</td>
<td>TOP TUBE HORIZONTAL</td>
<td>576.9 mm</td>
<td>607.0 mm</td>
</tr>
<tr>
<td>D</td>
<td>STANDOVER HEIGHT</td>
<td>409.7 mm</td>
<td>438.4 mm</td>
</tr>
<tr>
<td>E</td>
<td>BB OFFSET</td>
<td>-36.0 mm</td>
<td>-36.0 mm</td>
</tr>
<tr>
<td>F</td>
<td>BB HEIGHT</td>
<td>329.0 mm</td>
<td>329.0 mm</td>
</tr>
<tr>
<td>G</td>
<td>WHEEL BASE</td>
<td>1,121.6 mm</td>
<td>1,151.6 mm</td>
</tr>
<tr>
<td>H</td>
<td>BB CENTER TO TOPTUBE CENTER</td>
<td>345.0 mm</td>
<td>375.0 mm</td>
</tr>
<tr>
<td>I</td>
<td>BB CENTER TO TOP OF SEATTUBE</td>
<td>410.0 mm</td>
<td>440.0 mm</td>
</tr>
<tr>
<td>J</td>
<td>SEAT ANGLE</td>
<td>73.8°</td>
<td>73.8°</td>
</tr>
<tr>
<td>K</td>
<td>CHAINSTAY</td>
<td>438.0 mm</td>
<td>438.0 mm</td>
</tr>
<tr>
<td>L</td>
<td>REACH</td>
<td>409.7 mm</td>
<td>438.4 mm</td>
</tr>
<tr>
<td>M</td>
<td>STACK</td>
<td>593.1 mm</td>
<td>593.1 mm</td>
</tr>
<tr>
<td>N</td>
<td>STEM LENGTH</td>
<td>50.0 mm</td>
<td>60.0 mm</td>
</tr>
<tr>
<td>O</td>
<td>TRAIL</td>
<td>101.4 mm</td>
<td>101.4 mm</td>
</tr>
</tbody>
</table>

CONTESSA SPARK PLUS: 710, 720

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>HEAD TUBE ANGLE</td>
<td>67.2°</td>
<td>67.2°</td>
</tr>
<tr>
<td>B</td>
<td>HEAD TUBE LENGTH</td>
<td>95.0 mm</td>
<td>95.0 mm</td>
</tr>
<tr>
<td>C</td>
<td>TOP TUBE HORIZONTAL</td>
<td>576.9 mm</td>
<td>607.0 mm</td>
</tr>
<tr>
<td>D</td>
<td>STANDOVER HEIGHT</td>
<td>409.7 mm</td>
<td>438.4 mm</td>
</tr>
<tr>
<td>E</td>
<td>BB OFFSET</td>
<td>-36.0 mm</td>
<td>-36.0 mm</td>
</tr>
<tr>
<td>F</td>
<td>BB HEIGHT</td>
<td>329.0 mm</td>
<td>329.0 mm</td>
</tr>
<tr>
<td>G</td>
<td>WHEEL BASE</td>
<td>1,121.6 mm</td>
<td>1,151.6 mm</td>
</tr>
<tr>
<td>H</td>
<td>BB CENTER TO TOPTUBE CENTER</td>
<td>345.0 mm</td>
<td>375.0 mm</td>
</tr>
<tr>
<td>I</td>
<td>BB CENTER TO TOP OF SEATTUBE</td>
<td>410.0 mm</td>
<td>440.0 mm</td>
</tr>
<tr>
<td>J</td>
<td>SEAT ANGLE</td>
<td>73.8°</td>
<td>73.8°</td>
</tr>
<tr>
<td>K</td>
<td>CHAINSTAY</td>
<td>438.0 mm</td>
<td>438.0 mm</td>
</tr>
<tr>
<td>L</td>
<td>REACH</td>
<td>409.7 mm</td>
<td>438.4 mm</td>
</tr>
<tr>
<td>M</td>
<td>STACK</td>
<td>593.1 mm</td>
<td>593.1 mm</td>
</tr>
<tr>
<td>N</td>
<td>STEM LENGTH</td>
<td>50.0 mm</td>
<td>60.0 mm</td>
</tr>
<tr>
<td>O</td>
<td>TRAIL</td>
<td>101.4 mm</td>
<td>101.4 mm</td>
</tr>
</tbody>
</table>
TECH & FACTS REPORT
http://mdb.SCOTT-sports.com/pindownload/login.do?pin=PG5RV98BZVVS
PIN-Code: PG5RV98BZVVS

STUDIO SHOTS SPARK
http://mdb.SCOTT-sports.com/pindownload/login.do?pin=3DETQHZ3SBZL
PIN-Code: 3DETQHZ3SBZL

DETAIL SHOTS SPARK
http://mdb.SCOTT-sports.com/pindownload/login.do?pin=SG9UVP1KNEG4
PIN-Code: SG9UVP1KNEG4

ACTION SHOTS SPARK
PIN-Code: Q40IJ2JP2ARY

For more information please contact:
Jochen Haar
jochen.haar@SCOTT-sports.com
PR & Communication Manager

TECH AND FACTS REPORT

2017 SCOTT SPARK LINE-UP
COPYRIGHT: SCOTT SPORTS 2017

IMAGERY:
FRED LEISER (STUDIO SHOTS)
JOCHEN HAAR (ACTION,LIFE STYLE)

SCOTT-SPORTS.COM